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Abstract An optimised structure is one which uses the

smallest quantity of the best material to perform its

function, with adequate safety factor or margin for error.

Structural optimisation occurs not only in mechanical

engineering, but also in nature: plants with hollow stems or

stalks gain a height advantage, and are thus more efficient,

by approaching the optimum shape. Here we consider the

optimisation of orthotropic tubes, typifying, in a mechan-

ical sense, stalk and stem. The stiffness and strength of

orthotropic tubes of initially circular section are reviewed,

and diagrams are proposed which allow the optimum

section shape to be selected.

Introduction

In creating structures to carry loads, hollow, thin-walled

sections can be more efficient than thick-walled or solid

ones. They use less material and are therefore lighter (more

‘‘economical’’) while resisting the same bending or tor-

sional load; and this is true whether the design is based on

stiffness or on strength. When the mode of loading is

bending and the direction of loading is unknown, circular

tubes are better than other shapes. And if nature is to act as

a guide, circular tubes which are orthotropic are better than

those that are isotropic using the same amount of material.

An orthotropic tube is one in which the modulus and

strength parallel to the tube axis differ from those in the

circumferential direction; if this difference is chosen

properly, the orthotropic tube is both stiffer and stronger in

bending than the equivalent isotropic one. Orthotropic

tubes are exploited both by engineers (composites, highly-

drawn metals) and by nature (stalks, stems, bamboo culms)

and are almost invariably structured so that the stiff, strong

direction lies parallel to the axis of the tube. The question

we address here is this: how can the tube shape (that is, the

ratio of wall-thickness to tube radius) and the anisotropy

ratio (ratio of axial to radial modulus and strength) be

optimised to maximise the performance?

To answer this requires a study of the potential failure

modes of the tube. When a tube is bent, its section tends to

ovalise, loosing stiffness. Bent far enough, it fails in mode

1: ovalising and kinking with catastrophic stiffness

loss—like a plastic drinking straw, bent until it collapses.

But bending also creates tensile and compressive stresses

in the tube wall; if either of these exceeds the uniaxial

strength of the tube wall, the tube fails in mode 2: tensile

yield or fracture, or compressive collapse—like a stick of

celery, bent until it snaps. Finally, ovalisation has another,

subtler, consequence: it creates circumferential stresses in

the tube wall which, if they exceed the circumferential

strength (almost always the lower one), cause mode 3

failure: longitudinal splitting—like a stick of celery,

pinched between the fingers.

Observations and analyses of the bending response of

thin-walled orthotropic tubes appear in two quite separate

bodies of literature. That relating to plant stems and stalks

is largely experimental [1–14]. That focusing on light-

weight engineering structures, and particularly on poly-

mer-composite tubes are predominantly analytical, and

generally treat only one aspect of what is a multi-faceted

problem [15–26]. Only one paper [27] attempts, as we do
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here, a comprehensive survey of competing failure modes

and explores how well plants—particularly bamboo—are

structured to combat them. We now review the stiffness

and strength of thin-walled orthotropic tubes in more

detail, allowing for ovalisation during bending and for

four distinct failure modes. Much of the analysis closely

parallels that of [27] and will therefore be kept brief. The

recasting of all of the results in terms of section area and

shape, and the novel construction and optimisation, both

of shape and of anisotropy this allows, are new.

Bending of thin-walled orthotropic tubes

In designing a thin-walled tube to carry bending moments,

two sets of consideration arise. The first set relates to

stiffness, the second to the collapse moment (or strength).

Stiffness, ovalisation and the Brazier moment for

orthotropic tubes

The curvature, C, of an elastically isotropic beam is related

to the bending moment, M, which it carries by

M ¼ IEC ð1Þ

where E is the Young’s modulus of the material of which

the beam is made and I is its second moment of area. We

focus on a beam which is a thin-walled tube of initial

radius, r, and wall-thickness, t, with cross-section A ¼ 2prt.

If the bending is slight, the cross-section remains circular,

when

I ¼ pr3t ð2Þ

Then the moment is related to the curvature by

M ¼ pr3tEC ð3Þ

and the elastic strain energy per unit length of the tube is

U ¼ 1

2
pr3tEC2 ð4Þ

However, if the bending is substantial, the tensile and

compressive stresses in the tube walls due to its longitu-

dinal curvature cause the cross-section to ovalise as in

Fig. 1, and this has several consequences. The ovalisation

reduces the second moment of area, I; further bending

causes the ovalisation to increase and the stiffness to

decrease, until a maximum bending moment, the Brazier

moment, is reached and catastrophic failure follows [28].

In practice tubes fail at bending moments which are a little

less than this because local defects trigger a local buckling

mode, but we shall ignore this and identify the elastic

collapse moment with the Brazier moment.

To find it, we follow the method and notation of [29].

Ovalisation is measured by f, the ‘‘cross-sectional shape-

change parameter’’ (Fig. 1):

1 ¼ r � a

r
ð5Þ

where r and a are the radius of the original circular shape

and the minor axis of the ellipse respectively.

Then the total strain energy per unit length, U, of an

isotropic tube which has been deformed into an arc of

curvature C, replacing Eq. 4, becomes

U ¼ 1

2
pr3tEC2 1� 3

2
1þ 5

8
12

� �� �
þ 3

8

pt3

r
12E ð6Þ

The first term of the right hand side of this equation

describes the strain energy due to longitudinal stretching,

the second that due to ovalisation (circumferential bending).

For an orthotropic material this expression is modified

by replacing E with the longitudinal modulus, Ejj, in

the longitudinal stretching term and with the transverse

modulus, E?, in the ovalisation term.

U ¼ 1

2
pr3tEjjC

2 1� 3

2
1þ 5

8
12

� �� �
þ 3

8

pt3

r
12E? ð7Þ

Omitting the f2 term enclosed in square brackets (justified

in a moment), we seek the ovalisation, f, for a given

curvature, C, which minimises the total energy, U. Setting

dU=df ¼ 0 leads to

1 ¼ r4

t2

Ejj
E?

� �
C2 ¼ 4

3
c2 ð8Þ

where the dimensionless curvature, c, is defined by

c2 ¼ 3

4

r4

t2

Ejj
E?

� �
C2 ð9Þ

Substituting Eqs. 8 and 9 (inverted) for f and C2 in Eq. 7,

gives the strain energy, U, as a function of c alone

U ¼ 2p
3

t3

r
E? c2 � c4
� �

ð10Þ

From this we calculate the bending moment, M ¼ c
C

dU
dc , as

M ¼ 2pffiffiffi
3
p rt2 EjjE?

� �1=2
c� 2c3
� �

ð11Þ

Equation 11 is the generalisation of the simple Eq. 3 for

orthotropic tubes, including the effect of ovalisation, and
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reduces to it when Ejj ¼ E? and c� 1 . The maximum

M—the Brazier moment MB—is found by setting the

differential of Eq. 11 with respect to C equal to zero

dM

dC
¼ dM

dc

c

C
¼ 0 ð12Þ

giving the critical value c ¼ 1=
ffiffiffi
6
p

which, when reinserted

into Eq. 11 gives:

MB ¼
2
ffiffiffi
2
p

9
prt2 EjjE?

� �1=2 ð13Þ

Strategies exist for suppressing ovalisation. Bamboo culm

(to take an example from nature) is an orthotropic tube

which is divided into chambers by stiff diaphragms which

are positioned at the nodes from which the leaves grow. It

has been considered [1, 4, 9, 11, 27, 30–33] that these

might act as ring stiffeners, suppressing ovalisation. The

isotropic tube with periodic stiffeners is well treated in the

mechanics literature (see for example [29, 34]).

Consider a tube of finite length, L, thickness, t, and

radius, r, which is fitted with end-pieces which preserve the

original circular shape (thus L becomes the stiffener

spacing or internode length, as in Fig. 2a). Calladine [29]

derives the dimensionless group

X ¼ tL2

r3

� �1=2

ð14Þ

which characterises the problem: if W < 0.5, ovalisation is

largely suppressed, stiffening the tube and local buckling

occurs when the critical stress is reached to cause

axisymmetric buckling under uniaxial compression on the

compressive face of the tube [35]; for 0:5\X\2 , ovali-

sation at the point of local buckling increases with an

increase in W and the critical moment decreases until at

W ‡ 2 it is approximately equal to that at failure of an

infinitely long tube. Thus for W > 0.5 the end-pieces or

diaphragms have little influence.

Orthotropy changes this. A high value of the circum-

ferential modulus E? makes ovalisation difficult; a low

value makes it easy. A tube for which Ejj=E? > 1 ovalises

more, for the same curvature C, than one for which the

opposite is true; to prevent the ovalisation becoming crit-

ical, the stiffeners must be placed closer together. Suo [36,

37] introduces an orthotropic scaling factor, the anisotropy

ratio, n, which takes account of this phenomenon

n ¼
Ejj
E?

ð15Þ

With it, the effective length, k, of the internode can be

calculated

k ¼ n1=4L ¼
Ejj
E?

� �1=4

L ð16Þ

and the expression for W for an orthotropic tube becomes

X ¼ tk2

r3

� �1=2

¼
Ejj
E?

� �1=4
tL2

r3

� �1=2

ð17Þ

with the same limit (W < 0.5) required to suppress ovali-

sation. In plants a typical anisotropy ratio n is 10 [38].

Taking this value, the effective length of an internode is

increased by a factor of 1.8 so that the ovalisation even of

relatively short internodes with either L/r = 1.7 and r/t = 6

or with L/r = 1 and r/t = 2 cannot be prevented.

A second scheme—one seen in many plant stems—is

that of filling the tube with a foam (Fig. 2b). A low-density

foam is effective in suppressing local buckling [39, 40],

which is a bifurcation, but less so in suppressing ovalisa-

tion, which is not. But since local buckling occurs before

the Brazier moment is reached, foam-filling provides a way

of raising the failure moment without greatly increasing the

mass.

A third strategy—one seen in bone, particularly that of

birds—is to insert a network of transverse struts, forcing

the tube to remain circular, until the struts fail. Provided

the struts are separated by no more than a few tube-radii

they can, like the ring-stiffeners, successfully suppress

ovalisation.

Suppressing ovalisation is important: not only does it

increase the bending stiffness of the tube, but it also

inhibits two of the three failure modes discussed next.

Failure of thin-walled orthotropic tubes

The tube can fail in one of three ways.

Fig. 1 Schematic representation of the ovalisation of a tube loaded in

bending. The radius of the original circular cross-section is r0 and the

minor axis of the ovalised section is a
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Failure by ovalisation, instability and local kinking

This, as described above, occurs at a moment M1 which is

sufficiently close to the Brazier moment MB (Eq. 13) curve

that it can be approximated by this value:

M1 ¼ MB ð18Þ

If the tube is loaded with a moment larger than this, a kink

forms in the tube wall which leads to catastrophic failure

by buckling.

Failure by tensile fracture or compressive collapse

The maximum stress, rmax, in the wall of a thin-walled tube

of radius r and thickness t with a second moment of area

I ¼ pr3t , loaded by a bending moment, M, is:

rmax ¼ �
Mr

I
¼ � M

pr2t
ð19Þ

It is tensile on the side of the tube furthest from the centre

of curvature, and compressive on the other side. If the

tensile stress exceeds the strength in tension of the material

of which the wall is made, the tube will fracture. If, instead,

the compressive stress exceeds the compressive collapse

load of the tube wall, failure again follows. Both are treated

by equating Eq. 19 to rf, where this is the tensile failure

stress or the compressive collapse stress, whichever is

smaller. Both natural and man-made orthotropic tubes are,

very frequently, composites with fibres which lie

predominantly parallel to the tube axis. Such structures

fail in compression by fibre buckling at a stress which is

lower than the tensile strength, and for this reason we will

for the moment identify rf with the compressive failure

strength parallel to the tube axis, rcjj, giving:

M2 ¼ pr2trcjj ð20Þ

Failure by longitudinal splitting

The last failure mode is a little harder to analyse. A con-

sequence of a fibre lay-up which increases longitudinal

stiffness and strength is that the transverse properties

suffer. In particular, the transverse tensile strength (which

we shall call rt?) of near-uniaxial fibre composites can be

so low that the tube, when bent, splits along its length. The

tensile stress which causes this arises from the ovalisation,

as sketched in Fig. 3: it is greatest on the inner surface of

the tube at the point A and on the outer one at B. It is

calculated by imagining that ovalisation is caused by two

point forces, W, which generate a moment M* at B [41],

where

M� ¼ 0:18 �Wr ð21Þ

The point loads also lead to an ovalisation of the cross-

section [41] with a change in vertical diameter Dv, which

we describe by the dimensionless cross-sectional shape-

change parameter as before

1 ¼ Dv

2r
¼ 0:149 �Wr3

2rEI
¼ 0:89 � Wr2

E?t3
ð22Þ

Neglecting the small additional compressive stresses, W/2t,

which are due to the point loads, we find that the maximum

circumferential stress is related to the bending moment by

M� ¼ 1

6
r?maxt2 ð23Þ

Rearranging and substituting Eq. 22 for Wr in Eq. 21 and

equating the result with Eq. 23 yields a correlation between

the maximum transverse stress in the tube wall and the

ovalisation

Fig. 2 Schematic showing suppression of ovalisation (a) by dia-

phragms and (b) by a foam core

Fig. 3 Schematic of a bamboo cross-section, illustrating the way in

which the tensile stress which causes splitting is calculated

9008 J Mater Sci (2007) 42:9005–9014
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1 ¼ 0:82 � r?max

E?

r

t
ð24Þ

The final step is to link the ovalisation to the curvature

which is its real origin. Equating this expression for the

ovalisation with the one we obtained in the buckling

analysis above (Eq. 8) we find a correlation between the

maximum transverse stress, rmax, and the dimensionless

curvature

c ¼ 0:62 � r?max

E?

r

t

� �1=2

ð25Þ

Equating r?max with the transverse tensile strength of the

tube wall, rt? , and substituting Eq. 25 for c in Eq. 11 we

find a new general expression for the bending moment for

longitudinal splitting of the tube:

M3 ¼ 2:86 � rtð Þ3=2 Ejjrt?
� �1=2

1� 1:24
r

t

rt?
E?

� �� �
ð26Þ

As expected, M3 decreases as the transverse strength, rt?,

decreases.

Optimisation of shape and anisotropy: failure maps

Failure mechanisms compete. The dominant mechanism is

the one which occurs first as the bending moment M on the

tube is progressively increased; this usually means that it is

the one with the lowest value of the failure moment

ðM1;M2;M3; etc:Þ , though there is one exception. We now

explore this competition, seeking first the optimum shape

for the tube, then the optimum anisotropy ratio. To do so,

we express the geometric variables (contained in I) in such

a way as to separate section-area

A ¼ 2prt ð27Þ

from section-shape characterised by the shape factor, /:

/ ¼ 4pI

A2
¼ r

t
ð28Þ

The shape factor / is dimensionless; beams with the same

/ have cross-sections which may differ in size, but have

the same proportions: their cross-sections look like pho-

tographic reductions or enlargements of each other. The

form of the expressions for the failure moments M1; M2

and M3 suggests a plot of M/A3/2 (with units of GPa)

against the shape factor, / = r/t, to examine the compe-

tition in failure modes. (Dividing the moment by A3/2 en-

sures that we are comparing tubes of similar cross-sectional

area and same mass per unit length.)

Rearranging Eq. 18 (with (13)) give an expression for

failure by buckling:

M1

A3=2
¼ 1

9
ffiffiffi
p
p EjjE?

/

� �1=2

ð29Þ

That for tensile failure/compressive collapse (Eq. 20) now

reads:

M2

A3=2
¼ 1ffiffiffiffiffiffi

8p
p rcjj/

1=2 ð30Þ

and that for splitting (Eq. 26) becomes:

M3

A3=2
¼ 0:18 � rt?Ejj

� �1=2
1� 1:24

rt?
E?

/

� �� �
ð31Þ

Failure maps

Figure 3 shows the construction of a failure map for

orthotropic tubes without stiffeners, loaded in bending.

Three curves are plotted in Fig. 4a, corresponding to each

of the three failure modes: buckling (Eq. 29), fracture/yield

(Eq. 30), and splitting (Eq. 31).

The overall failure moment of the tube is defined by the

lower envelope of these curves, with one qualification,

detailed below. A change of mechanism takes place where

the curves intersect—that is, at the points A, B and C. The

first of these occurs at the value of / at which failure by

fracture/yield—Eq. 30—and by splitting—Eq. 31—have

the same value of M/A3/2. The failure map of Fig. 4c

illustrates that the point A lies well to the left of the

downward-curving segment of the M3 curve, which is

caused by the term in square brackets in Eq. 31. Neglecting

this term, equating the two and solving for / gives:

/A ¼ 0:81 �
rt?Ejj

r2
cjj

 !
ð32Þ

(a full solution of /A is given in Appendix A). The second

change of mechanism occurs at the value of / at which

buckling—Eq. 29—and fracture/yield—Eq. 30—have the

same value of M/A3/2. Equating these and solving for / gives:

/B ¼ 0:31 �
EjjE?
� �1=2

rcjj
ð33Þ

However, since the splitting curve (Eq. 31) has the lowest

values of M/A3/2 for /A\/\/C in Domain (2), failure

occurs by splitting.

The situation in Domain (3) requires a little more

explanation. At a first glance one might think that, as in

J Mater Sci (2007) 42:9005–9014 9009
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Domain (2), splitting determines the failure moment (since

the lowermost curve is that of M3), but this is not so. The

peak moment in Domain (3) is set by the Brazier moment, not

by splitting—although splitting may subsequently occur.

Figure 3b helps to explain this: it is a graph showing the

bending moment, M, plotted against dimensionless curva-

ture, c, and illustrates the sequence of events. On bending, M

increases with c until the Brazier moment, MB, is reached,

beyond which it decreases. For values of / less than /C, the

condition for splitting is met before the Brazier moment is

reached, and splitting therefore determines the failure

moment in Domain (2). But for values of / greater than /C,

the tube is so thin-walled that the Brazier moment is reached

first, before the stresses in the tube wall are large enough to

cause splitting. Thus the tube then buckles, and splitting, if it

occurs at all, is a secondary event. The transition occurs at the

value of / at which the M3 is tangent to M1, when, as shown

in the development of Eq. 13, c ¼ 1=
ffiffiffi
6
p

and, from Eq. 25

(with r/t = / and r?max ¼ rt?)

/C ¼ 0:27 � E?
rt?

� �
ð34Þ

These boundary values of / allow the failure map to be

completed. The result is shown in Fig. 4c. It displays the

fields of dominance of each failure mechanism. Failure

maps are material-specific, that is, they are calculated

for given sets of the four key material properties,

Ejj; E?; rcjj and rt?; the values used for Fig. 4 are listed

in Table 1.

Optimisation of shape

The best shape for the tube is that which—for a given

cross-section A—carries the greatest moment M. We

therefore seek the value of / at which M/A3/2 is a maxi-

mum. For the conditions of Fig. 4c the answer is simple:

the best shape is that corresponding to /A, and since this

lies well to the left of the downward-curving part of the M3

curve, it is well approximated by Eq. 27.

There is another possibility. As rt? increases, splitting

becomes more difficult, the M3 curve moves upwards and

the ‘‘splitting’’ domain shrinks in size and finally disap-

pears. At the point at which this happens

/A ¼ /B ð35Þ

giving (by Eqs. 32 and 33) the condition for the transition

to no-splitting as:

rt?
rcjj
¼ 0:38 � E?

Ejj

� �1=2

ð36Þ

When this condition is met, the shape which gives the

largest value of M/A3/2 is that corresponding to /B.

Fig. 4 (a) A failure map of loading coefficient M/A3/2 plotted against

the shape factor / for the three failure curves M1 (fracture/yield), M2

(buckling) and M3 (splitting). The intersections at I, II and III indicate

the transitions from one failure mechanism to another. (b) A graph

showing bending moment, M, plotted against dimensionless curva-

ture, c. (c) A failure map showing the three failure domains fracture/

yield (1), buckling (2) and splitting (3)
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In the practice of engineering design, gradual or ‘‘be-

nign’’ failure modes, such as yielding, are viewed with less

alarm than those which are sudden or ‘‘catastrophic’’,

among which are buckling and splitting. Responding to

this, the designer applies a greater safety factor to cata-

strophic modes than to those which are benign, and there is

some evidence (see below) that nature may do the same.

The practical consequence of this is to shift the optimum

shape a little to the left on Fig. 4c, that is, to slightly

smaller values of /.

Optimisation of anisotropy

The last section identified two expressions for the optimum

shape, /, for orthotropic tubes, expressed in terms of

material properties. By substituting these back in the fail-

ure equations, the failure moment of a tube of optimum

shape can be written as a function of material properties

alone. If splitting is possible, (that is, Eq. 36 is not satis-

fied), the ideal shape is that corresponding to /A. Substi-

tuting this into Eq. 30 gives the optimum moment that can

be achieved with a given set of material properties:

Mopt

A3=2
¼ 0:18 � rt?Ejj

� �1=2

with /opt ¼ 0:81 �
rt?Ejj

r2
cjj

 ! ð37Þ

If, on the other hand, splitting is suppressed (that is, Eq. 36

is satisfied), the ideal shape is that corresponding to /B.

Substituting this into Eq. 30 gives

Mopt

A3=2
¼ 0:11 � rcjj EjjE?

� �1=2
� 	1=2

with /opt ¼ 0:31 �
EjjE?
� �1=2

rcjj

ð38Þ

Many orthotropic materials are fibre-reinforced

composites, and for these a degree of control of the

anisotropy is possible by adjusting the lay-up. It is then

reasonable to ask: what is the best value for the

anisotropy? To answer this, consider an idealised

example: that of a tube made of fibres of modulus Ef

and strength rf, in a matrix of modulus Em and strength

rm. Let a fraction c of the total volume fraction of fibres,

f, lie parallel to the tube axis; the remaining fraction

(1 – c) is oriented circumferentially. Then, to an adequate

approximation for illustrative purposes, the moduli of the

material are:

Ejj ¼ð1� f Þ � Em þ c � f � Ef and

E? ¼ð1� f Þ � Em þ 1� cð Þ � f � Ef

ð39Þ

Defining �E as the value of E for which c = 1/2 (when the

material is quasi-isotropic)

�E ¼ ð1� f Þ � Em þ
1

2
� f � Ef ð40Þ

we find

Ejj ¼ �E 1þ c� 1

2

� �
f

Ef

�E

� �
and

E? ¼ �E 1þ 1

2
� c

� �
f

Ef

�E

� � ð41Þ

with similar expressions for the strengths in terms of the

strength r at u = 1/2:

rjj ¼ �r 1þ c� 1

2

� �
f
rf

�r

� �
and

r? ¼ �r 1þ 1

2
� c

� �
f
rf

�r

� � ð42Þ

We take, as an example, the case in which the optimum

shape is limited by /B, when Eq. 38 applies. Substituting

for Ejj; E? , and rcjj gives:

Table 1 Data used in plotting

Figs. 3 and 5: Young’s modulus

parallel and perpendicular to the

tube axis, compressive strength

parallel to the tube axis and

tensile strength perpendicular to

the tube axis

Young’s Modulus Compressive Strength Tensile Strength

(parallel) Ejj
[GPa]

(perpendicular) E?
[GPa]

(parallel) rcjj
[MPa]

(perpendicular) rt?
[MPa]

Green

Low 5 0.5 45 4

Medium 10 1 50 5

High 15 1.5 55 6

Dry

Low 10 1 100 8

Medium 15 1.5 115 10

High 20 2 130 12

J Mater Sci (2007) 42:9005–9014 9011

123



Mopt

A3=2
¼ 0:11 �r � �Eð Þ1=2

�
(

1þ c� 1

2

� �
b

� �1=2

�
�

1þ c� 1

2

� �
a

� �
1þ 1

2
� c

� �
a

� ��1=4
)

ð43Þ

with a ¼ f
Ef

�E
and b ¼ f

rf

�r .

The limits for a are determined for the extreme cases

that Em � Ef , when

a ¼ f
Ef

�E
¼ f � Ef

1� fð Þ � Em þ 1
2
� f � Ef

� f � Ef

1
2
� f � Ef

¼ 2 ð44Þ

and that Em ¼ Ef=2 , when

a ¼ f
Ef

�E
¼ f � Ef

1=2 � 1� fð ÞEf þ f � Ef


 � ¼ 2f ð45Þ

With typical values for the fibre-volume fraction

0� f � 0:6 and an analogous analysis for b, we find that

0 £ a < 2 and 0� b\2 .

The term in the curly brackets of Eq. 43 describes the

way in which the efficiency of material usage, measured

by M/A3/2, varies with the degree of anisotropy. When

c = 1/2, the material is isotropic and the bracketed term

takes the value 1. When c = 1 all the fibres are aligned

parallel to the tube axis and anisotropy is maximised.

Figure 5 shows this expression plotted against

c ð0:5\c\1Þ for different values for a and b. Note that a
and b will vary independently but in parallel. In the ex-

treme case that the material contains no fibres and is truly

homogeneous (a = b = 0), the failure moment is, cor-

rectly, independent of the parameter c. There is a broad

maximum between c = 0.75 and c = 1.0, depending on

the values of a and b, meaning that there is an ‘‘ideal’’

anisotropy that maximises the efficiency. To illustrate this

with an example, we seek to optimise the fibre distribution

of a composite tube with a 48% volume fraction of fibres

with a Young’s modulus ten times higher than that of the

matrix. Assuming that also the fibre strength is ten times

higher than that of the matrix, we calculate that

a ¼ b ¼ 1:648 . With these values we find that the

expression in the curly brackets in Eq. 43 reaches a

maximum at c = 0.803, thus when about 80% of the

fibres are aligned with the longitudinal axis of the tube;

giving an efficiency that is 14% larger than that of an

isotropic tube.

With a more detailed model of how stiffness and strength

depend on structure (here described by a, b and c)

a precise optimisation becomes possible, this is, however,

beyond the scope of this study.

An application: bamboo culm

In Fig. 6a and b, failure curves are plotted for a typical

range of green and dry bamboo culms. The three sets of

lines on each chart describe culms with ‘high’, ‘medium’

and ‘low’ properties as listed in Table 1. In Fig. 6c the

failure modes of a green bamboo culm (green lines) and a

dry bamboo culm (red lines) both with medium properties

are compared. We may now evaluate the stiffness

requirement required by M4 in Eq. A4, using typical shape

factors, in the range / = 2–6. The shape factors and

stiffness requirement circumscribe the region of the chart

on which bamboo culms lie; it is plotted as a box. In all

cases the failure moment increases with increasing / up to

the boundary between the ‘fracture/yield’ region and the

’splitting’ regime; beyond this it slowly falls. The optimum

shape is that at the peak.

From an engineering point of view, the most efficient

shape for safe design is that which falls into the region

just below the highest part of the fracture-domain (the

peak of the fracture envelope). This ensures that cata-

strophic failure by local buckling and splitting is

prevented while the material is used most efficiently.

This is what we find for both the green and the dry

bamboo.

Fig. 5 The graph shows the expression in curly brackets ({}) of

Eq. 43 plotted against c for a number of different values for a and b.

Note that a and b will vary independently but in parallel. In the

extreme case that the material is truly homogeneous (a = b = 0), the

failure moment is, correctly, independent of the tubes shape (black
line)
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Appendix 1 full solution for /A

The transition from fracture/yield to splitting is found by

equating the respective moments of failure at A:

/A ¼
A

2
� A2

4
� B

� �1=2

ðA1Þ

with

A¼
1þ2:037 � Ejj

E?

� 	
rt?
rcjj

� 	2

1:259 � rt?
E?

� 	2 Ejjrt?
r2

cjj

� �
2
664

3
775 and B¼ 1

1:236

� �2
E?
rt?

� �2

Appendix 2 failure through inadequate stiffness

The final criterion for the macroscopical mechanical per-

formance is that of stiffness. Mosbrugger [42] classifies

plants according to their structural behaviour: either the

plant is a ’flexibility strategist’ and reduces external loads

by bending or it is a ’stability strategist’ and has a

structure which is stiff and strong enough to withstand the

loads without much bending. As the principal load is that

due to wind and the velocity of wind increases with height

above ground, a flexible tree which bends in a strong wind

reduces the moment arm of the net wind force, especially

if elastic deformation of its crown reduces its down-wind

profile. Tree trunks are frequently stability strategists,

whereas their branches must be capable of bending to a

quarter-circle. The curvature of the bamboo culm, C, can

then be expressed as a function of the length, l, of the

stem

C ¼ 1

R
� p

21
ðA2Þ

Substituting this expression for C in Eq. 8 and inserting the

result for c in Eq. 13b gives the bending moment, M, which

bends the stem into a quarter-circle

M ¼
ffiffiffi
p
p

4
ffiffiffi
2
p r

l

� 	
A3=2/1=2Ejj 1� 3p2

8

r

l

� 	2

/2 Ejj
E?

� �� �
ðA3Þ

Fig. 6 (a) and (b) Failure maps plotting the loading coefficient

M/A3/2 against shape factor / for typical green (a) and dry (b)

bamboo culms. The green, blue and red sets of lines indicate low,

medium and high property values as listed in Table 1. The boxes

circumscribe the region in which bamboo typically lies according

to its shape and the stiffness criterion. The numbers (1), (2) and (3)

label the three failure domains fracture/yield, splitting and

buckling, respectively. (c) A failure map comparing green (green

lines) and dry (red lines) bamboo culms of medium material

properties
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The second expression in the square bracket is very small

due to the high slenderness ratios of bamboo (/ = l/r =

550–1000, [43]) and may therefore be neglected. The

moment which bends a stem to a quarter-circle may there-

fore be rewritten as

M4 ¼
ffiffiffi
p
p

4
ffiffiffi
2
p r

l

� 	
A3=2/1=2Ejj ðA4Þ

If the plant is to function as a flexibility strategist, it must

be able to do this without failing by any of the other three

mechanisms analysed above.
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